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Applications of FT-IR spectroscopy 
The,following article was written by Toad Mozayeni of Akzo Chemicals 
Inc. s Research Department, McCook, Illinois. Serving as Associate Edi- 
tor for JAOCS News for Instrumentation for this article was William 
McShane of Kraft Inc. 

Dur ing  the p a s t  decade, Fourier  
t r ans fo rm- in f ra red  spec t roscopy  
(FT-IR) has become ext remely  popu- 
lar among IR  spectroscopists .  Al- 
though the basic technology for this 
ins t rument  was developed around 
the turn of the century  (1-3}, the 
commercial  availabil i ty of the in- 

s t rument  and its popular i ty  are rela- 
t ively recent phenomena.  

I n s t r u m e n t a t i o n  
The essential  component  of an FT- 
IR spect rometer  is the interferome- 
ter, used in place of the monochro- 
mator  found in dispersive infrared 

TABLE 1 

Different Types of Beam Splitters for Michelson's Interferometer 
Region in CM -1 Materials Coating 

NIR 20,000-3,000 Quartz 
NIR 10,000-2,000 CaF 2 
MIR 4,000- 400 KBr 
MIR 800- 200 CsI 
FIR 650- 100 Mylar 
FIR 300- 30 Wire mesh 

MgO 
Si 
Ge 

TABLE 2 

Detectors for FT-IR 

Detector Operating temperature Detection range in CM -~ 

TGS a Room Temperature 5,000- 30 
DTGS Room Temperature 5,000- 30 
MCT b Liquid Nitrogen 4,000- 750 
PbS Liquid Nitrogen 20,000-3,000 
PbSe Liquid Nitrogen 20,000-3,000 

aTGS is triglycine sulfate. 
bMCT is mercury-cadmium-tellurium. 

TABLE 3 

Spectral Resolution in FT-IR 

Mirror travel Retardation Resolution 
in CM in CM a in CM -1 

0.06 0.125 8.000 
0.25 0.500 2.000 
1.00 2.000 0.500 
4.00 8.000 0.125 
8.00 16.000 0.060 

aRetardation is twice the distance mirror traveled (round-tript. 

i n s t rumen t s .  The in te r fe romete r s  
m o s t  commonly  used  t oday  are 
based on the interferometer  origi- 
nally des igned by  Michelson in 
1897. 

The interferometer basically con- 
sists of two mirrors  and a beam 
spl i t ter .  One mirror  is f ixed and 
the other is movable. The beam split- 
ter  splits the infrared l ight beams  
and directs  t hem to the  mirrors  
IFig. 1). Reflected beams  then are 
recombined. Because one of the mir- 
rors  is movable ,  a l t e rna t ing  con- 
structive/destructive interference oc- 
curs, creat ing a modulated beam 
tha t  interacts  with the sample. A 
laser usually is used to control mir- 
ror position. 

Al though other types  of inter- 
ferometers  have been designed, the 
Michelson interferometer  still is the 
most  commonly used in current com- 
mercial FT- IR ins t ruments .  The ma- 
terial and coat ing of the beam split- 
ter  (Table 1) determine the spec- 
tral regions in which the interferome~ 
ter  can be used. The type  of detec- 
tor  (Table 2) determines the usable 
infrared regions and the sensitiv- 
i ty of the instrument .  The distance 
t raveled by  the moving  mirror de- 
termines the resolution of spectral  
bands  (Table 3). The spec t rum or 
in ter ferogram thus obtained, how- 
ever, is a t ime-domain  spec t rum 
(Fig. 2) and of very little use to IR  
spectroscopists .  

Fourier, a 19th century  French 
mathemat ic ian ,  provided a mathe- 
matical  method necessary for trans- 
format ion of t ime-domain spect ra  
to frequency-domain spectra.  Con- 
sidering the large number  of points  
necessary to obtain an IR spectra,  
calculations for this t ransformat ion  
are ex t r eme ly  tedious and time- 
consuming. The recent advances in 
compu te r  t echnology  and a spe- 
cially developed version of this trans- 
f o r m a t i o n - f a s t  Fourier t rans form 
( F F T ) - - b y  Cooley and Tukey  (4) 
make these calculations ext remely  
rapid and the computer  an integral  
pa r t  of the instrument .  

A d v a n t a g e s  of F T - I R  i n s t r u m e n t s  
There are a number  of advan tages  
offered by FT- IR over dispersive 
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FIG. 1. Schematic diagram of a Michelson interferometer. X 
represents retardation. 

FIG. 4. Schematic diagram of diffuse reflectance accessory 
(DRIFTS}. 
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FIG. 2. Time-domain interferogram. 
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FIG. 3. Schematic diagram of a cylindrical internal reflectance 
cell. Rod crystal is ZnSe. 

FIG. 5. Schematic diagram of photoacoustic chamber. 
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FIG. 6. Schematic diagram of capillary GC-FT-IR system. 
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FIG. 7. Gram-Schmidt chromatogram of distillate from an ethox- 
ylated fatty amine. 
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FIG. 9. G-S chromatogram of oleyl amine (bottom solid layer). 
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FIG. 8. IR spectra of GC(6) and GC(7) and their respective 
matches. 

FIG. 10. Top: Vapor phase IR spectrum of the peak at 24.9 
min. Bottom: IR spectrum of the peak at 25.1 min. 
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infrared instruments. The follow- 
ing summarizes some of these ad- 
vantages. 

The Fellgett advantage, or mul- 
tiplex advantage 15}, is associated 
with the speed of data acquisition 
in the FT-IR instrument. The Jac- 
quinot advantage t6) refers to the 
high-energy throughput in these in- 
struments. The calculated values 
of Jacquinot advantage are 40-50 
times more than a dispersive in- 
strument. In practice, however, the 
number is not that high (7). Con- 
nes' advantage briefly refers to the 
high degree of wavelength accuracy 
obtained in the IR spectra due to 
the use of highly monochromatic 
laser light for precise mirror posi- 
tioning. Finally, the stray light ad- 
vantage, heat effect {sample is far 
removed from the IR radiation 
source} and mechanical simplicity 
of this instrument make FT-IR a 
far superior instrument to its dis- 
persive predecessor. 

All of these advantages, par- 
ticularly Fellgett, contribute to a 
more sensitive, higher signal-to- 
noise ratio iS/N} and, in general, 
better quality infrared spectra. IR 
spectroscopists now are able to use 
many new accessories that were not 
applicable to the dispersive instru- 
ment. For example, the recent ad- 
vances in interfacing the gas liq- 
uid chromatograph (GC), micro- 
scopes and the thermo gravimetric 
system {TGS) with FT-IR mainly 
are due to these advantages. 

�9 Diffuse reflectance infrared 
Fourier transform spectroscopy 
{DRIFTS)--This particular acces- 
sory (Fig. 4), with its micro sam- 
piing capability, allows IR analy- 
sis of minute amounts of solid sam- 
ples and, in most cases, eliminates 
the need for making a potassium 
bromine {KBr) disk for IR analysis 
of solid samples. 
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�9 Photoacoustic spectroscopy 
{PAS}--This accessory {Fig. 5) is 
uniquely innovative and has been 
adapted to FT-IR technology. In 
this accessory, sound waves are de- 
tected by a focused and powerful 
microphone from the heat waves 
generated from the sample that has 
been exposed to infrared light. The 
advantage of PAS is that the shape 

FT-IR accessories 
Accessories for FT-IR instruments 
include the following: 

�9 Attenuated total reflectance 
(ATR)--Even though this accessory 
has been used extensively by spec- 
troscopists with dispersive IR in- 
struments, FT-IR provides much 
better  resolution and higher S/N 
spectra. The quality of IR spectra 
obtained from the Germanium crys- 
tal {depth of infrared light penetra- 
tion 2-4 micron}, for example, is 
superior to any spectra obtained 
from a dispersive IR instrument. 

�9 Cylindrical internal reflec- 
tion (Circle Cell)--This cell {Fig. 3) 
permits IR spectra of a sample di- 
luted {1 to 5%) in a solvent such 
as water, or other solvents that 
have high infrared adsorption. 
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FIG. 11. Top: Standard vapor phase IR spectrum of unsatu- 
rated primary amide. Bottom: IR spectrum of saturated amide. 
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FIG. 12. FID chromatogram of oleyl amide (top layer liquid). 
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FIG. 13. G-S chromatogram of coconut oil-based dimethyl amine 
oxide. 
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FIG. 14. Vapor phase IR spectrum of the o|efin [peak GC(3)] 
and of coconut oil-based dimethyl amine [peak GC(4)]. 
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of the solid sample does not pose 
any problem for IR analysis; as a 
result, PAS can be used for sur- 
face analysis of different shapes 
and types of solid samples. 

There also are other accesso- 
ries, such as microscopes and TGS, 
that  have been designed to take 
advantage of FT-IR capabilities. 
GC-FT-IR is one such accessory. 

In 1966, Low and Freeman (8) 
demonstrated the potential impor- 
tance of the GC-FT-IR-interfaced 
instrument. Even though this dem- 
onstration lacked the sensitivity 
and sophistication available today, 
it was considered a major break- 
through in the field of IR technol- 
ogy. In 1969, Digilab Co. (now Bio- 
Rad Digilab Div.) manufactured the 
first commercial GC-FT-IR instru- 
ment. The rapid advancement in 
this field was due to two major de- 
velopments: introduction of the 
MCT (mercury-cadmium-teUurium) 
detector, which has brought the 

limit of detection to the nanogram 
level, and construction of gold- 
coated borosilicate glass "light- 
pipe" (7). 

Today, however, the availabil- 
ity of cryogenic freezing of GC col- 
umn eluent in solid argon matrices 
has lowered the detection limit of 
this instrument to the GC-mass spec- 
trometer level. 

Figure 6 shows the diagram of 
the commercially available GC-FT- 
IR instrument. The analysis is done 
as different fractions are eluted 
from the GC column into the light- 
pipe "on the fly." The chromato- 
gram (9) thus generated, called 
Gram-Schmidt (G-S), is computer- 
reconstructed and is qualitatively 
similar to a flame ionization detec- 
tor (FID) chromatogram. Quanti- 
tatively, however, a G-S chromato- 
gram is different than an FID one, 
due to the sensitivity of infrared 
light to molar adsorbence of differ- 
ent classes of organic compounds. 
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In general, a G-S chromatogram 
is a means for computer assign- 
ment of each fraction to a specific 
IR spectrum. 

Experiments reported in this 
article were carried out on a Digilab 
Model FTS-60/GS-FT-IR (light- 
pipe) instrument. The GC instru- 
ment interfaced with this instru- 
ment was Hewlett-Packard Model 
5890, equipped with a fused-silica 
capillary column (DB1-30 meter 
0.25 micron film thickness from 
J&W Scientific Inc.). The carrier 
gas was helium at 3 ml per minute 
flow. 

Example 1 
Figure 7 is a G-S chromatogram 
of distillate from an ethoxylated 
fatty-based amine. The peaks as- 
signed as GC(6) and GC(7) are not 
well resolved. The lack of resolu- 
tion is due to the capability of the 
column used. However, the IR spec- 
trum of each of these peaks, as 
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shown in Figure 8, is well-matched 
with the IR spec t rum of such pure 
compounds from the U.S. Environ- 
menta l  Protect ion Agency l ibrary 
as p-dioxane and ethylene glycol. 

Example 2 
One impur i ty  commonly present  in 
the fa t ty-based amine is an amide. 
Pr imary  amides are the main cause 
of coprecipitation of the f a t ty  amine 
products. Figure 9 shows a G-S chro- 
m a t o g r a m  of the bo t tom solid layer 
of oleylamine. The two peaks  at  
24.9 and 25.1 minutes  of retention 
t ime are of special interest.  Figure 
10 shows the IR spec t rum of each 
peak. 

In compar ing this with the stan- 
dard vapor  phase  spect ra  of a satu- 
ra ted and an unsa tu ra ted  p r imary  
amide (Fig. 11), it becomes clear 
tha t  the peaks  are due to the pres- 
ence of p r imary  amides in the bot- 
tom solid layer of the sample. 

Fur thermore,  the F I D  chroma- 
tograph  of the top liquid layer of 
the same sample mainly shows the 
presence (Fig. 12) of the peak at  
24.9 minutes  of retent ion t ime (due 
to u n s a t u r a t e d  p r i m a r y  amide). 
This sugges ts  tha t  the sa tura ted  
p r imary  amide is the main cause 
of coprecipitation in the sample. 

Example 3 
One of the mos t  common tasks  per- 
formed by  GC in the analysis of 
various f a t ty  amines is the deter- 
minat ion of alkyl chain length dis- 
tribution. In some cases, however, 
the peaks  observed in the F ID  chro- 
m a t o g r a m  are due not only to the 
chain length distribution, but  also 
to decomposi t ion  of the product .  
For example, the oxide form of co- 
conut oil-based dimethyl  amine (10- 
11), without  any prior sample prepa- 
ration, decomposes only part ial ly 
to its olefinic hydrocarbons.  

Figure 13 shows a G-S chro- 
m a t o g r a m  of coconut oil-based di- 
methyl  amine oxide. However,  the 
IR spec t rum of each peak reveals 
the nature  of this part ial  decompo- 
sition. Figure 14 shows the IR spec- 
t ra  of two of these peaks. The bot- 
tom spectrum, with IR bands at 
2823 and 2773 cm -~, shows the pres- 
ence of dimethyl amine; the top spec- 
t rum shows the corresponding ole- 
fin (IR band at  3083 cm -~ and none 
at 2823 and 2773 cm-~). 

Conclusions 
The field of FT- IR technology has 
been ex t r eme ly  act ive in recent  
years.  FT- IR  i n s t r u m e n t  prices 
have been reduced to the price level 

of dispersive IR ins t ruments  and 
innovations or improvements  of old 
techniques have been introduced. 
The ease of da ta  manipulat ion and 
the addition of many  valuable ac- 
cessories will foster  the use of this 
technology in years  to come. 
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